Ricci Type Identities for Non-basic Differentiation in Otsuki Spaces

نویسنده

  • Svetislav M. Minčić
چکیده

In the Otsuki spaces one uses non-symmetric connections: one for contravariant and other for covariant indices. Also, we have two kinds of covariant differentiation-basic and non-basic. In the present work we investigate the Ricci type identities and curvature tensors for the non-basic differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci Type Identities for Basic Differentiation and Curvature Tensors in Otsuki Spaces

In the Otsuki spaces use is made of two non-symmetric affine connection: one for contravariant and the other for covariant indices. In the present work we study the Ricci type identities for the basic differentiation and curvature tensors in these spaces. AMS Mathematics Subject Classification (2000): 53B05

متن کامل

On Ricci identities for submanifolds in the 2-osculator bundle

It is the purpose of the present paper to outline an introduction in theory of embeddings in the 2-osculator bundle. First, we recall the notion of 2-osculator bundle ([9], [2], [4]) and the notion of submani-folds in the 2-osculator bundle ([9]). A moving frame is constructed. The induced connections and the relative covariant derivation are discussed in the fourth and fifth section ([15], [16...

متن کامل

A visual introduction to Riemannian curvatures and some discrete generalizations

We try to provide a visual introduction to some objects used in Riemannian geometry: parallel transport, sectional curvature, Ricci curvature, Bianchi identities... We then explain some of the strategies used to define analogues of curvature in non-smooth or discrete spaces, beginning with Alexandrov curvature and δ-hyperbolic spaces, and insisting on various notions of generalized Ricci curvat...

متن کامل

On 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type

‎In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five‎. ‎Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces‎. ‎Moreover‎, ‎we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...

متن کامل

On Ricci Type Identities in Manifolds with Non-symmetric Affine Connection

In [18], using polylinear mappings, we obtained several curvature tensors in the space LN with non-symmetric affine connection ∇. By the same method, we here examine Ricci type identities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004